fReactor logo Unlocking the Power of Flow Chemistry

Home
fReactor - Classic fReactor - Maxi fReactor - PhotoFlow Modules
fReactor - Classic
See the wide range of reactions run on fReactors
Flow Chemistry Advantages of flow Introduction to flow reactors Characterising flow reactors Residence time of fReactors (CSTRs) Flow within tubular reactors Residence time of tubular reactors Multiphasic flows Additional flow equipment The fReactor as a batch Pressure reactor
About Buy ☰


Flow Chemistry Equipment

Due to the continuous operation of flow chemistry, their are different types and requirements for equipment when compared to batch reactions. Some commonly used pieces of equipment and their symbols are shown below. A flow-diagram (or Process and Instrumentation Diagram - P&ID) shows how your reactor scheme is assembled and an important part of describing your process. Reaction conditions are also important and covered next.


Common flow symbols and equipment

Symbol Description
Symbol for pumpPump: drives flow of fluid into reactor. Common pumps include syringe pumps, gear pumps, HPLC pumps and peristaltic pumps. Considerations include flow rate, pressure, suspended solids and fluid viscosity.
Symbol for pipePipe: carries fluid between flow equipment. Common tubing in laboratory flow chemistry is 1/8” outer diameter (OD) tubing and 1/16” OD tubing manufactured from PTFE. This fits standard 1/4-28 HPLC fittings. However it is the inner diameter (ID)that is relant to the performance of the reactor - so ensure you report this as tubing with the same outer diameter can have different inner diameters.
Symbol for coiled tubeTubular reactor: coil of tubing in which reaction takes place. For single phase chemistry, mixing is largely controlled by diffusion. Low energy input means phases segregate - e.g. particles settle.
Symbol for inline mixerInline mixer: tortuous path through a tubular reactor (often using inserts) to create mixing.
Symbol for cross and teeMixing tee and mixing cross: used to mix reagents before entering reaction zones - the internal flow may have been designed to give mixing between streams. For very fast reactions these can form the reactor itself.
Symbol for CSTRContinuous Stirred Tank Reactor (CSTR): single stirred tank reactor with fluid entrances and exits. Energy input through active mixing allows multiphasic reactions to be carried out.
Symbol for continuous CSTRCascade CSTR: a chain of n CSTRs to give consistent processing conditions. Multiple zones also allows addition of reactants into different zones and instrumentation between zones. Well understood behaviour and the technology that the fReactors are built on.
Symbol for single fReactorA single fReactor module bringing the benefits of a CSTR to the laboratory environment.
Symbol for n freactor stagesA cascade of n fReactors: a chain of n fReactors - our laboratory version of CSTRs bringing the benefits of these to your laboratory environment.
Symbol for packed bedPacked bed: a fixed bed of particles (e.g. catalyst) through which the liquid flows.
Symbol for back pressure regulatorBack pressure regulator: a spring loaded valve to maintain an elevated pressure within the reactor – thereby allowing operation at higher temperature. The pressure differential is indicated e.g. a BPR of 7 bar (indicate where m is) means the reactor pressure will be 8 bar (absolute) if the outlet is open to atmospheric pressure.
Symbol for microreactorMicro-reactor: generally consists of sub-millimetre flow channels etched into a small chip. Small distances mean diffusion can be efficient for mixing and high surface area to volume ratio - if your process relies on these scale-out (numbering up) rather than scale-up might be the path to larger scale production.
Symbol for valvesValves: used to divert flow from one pipe to another and to switch off flow. Shown left are 2-way, 3-way and 4-way valves.
Symbol for 6 way valveSymbol for 6 way valveAn injection loop allows a sample to be stored (or collected) in a loop of pipe known the storage loop, before being injected (or extracted) from the main flow. Further information is on this page.
Symbol for instrumentationInstrumentation: allows you to characterise properties - inline sensors give a direct read of the flowing stream (e.g. an inserted temperature probe), atline is characterised by a sample being withdrawn (e.g. into a HPLC). Common inline sensors include temperature, pH, UV absorption; atline sensors include HPCL, mass-spectrometry.

Contact information: Enquiries enquiries@asynt.com

Asynt logo

© Copyright 2021 Professor Nikil Kapur | University of Leeds